Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(2): 743-752, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404309

RESUMO

The advent of super-resolution microscopy has opened up new avenues to unveil brain structures with unprecedented spatial resolution in the living state. Yet, its application to live animals remains a genuine challenge. Getting optical access to the brain in vivo requires the use of a 'cranial window', whose mounting greatly influences image quality. Indeed, the coverslip used for the cranial window should lie as orthogonal as possible to the optical axis of the objective, or else significant optical aberrations occur. In this work, we assess the effect of the tilt angle of the coverslip on STED and two-photon microscopy, in particular, image brightness and spatial resolution. We then propose an approach to measure and reduce the tilt using a simple device added to the microscope, which can ensure orthogonality with a precision of 0.07°.

2.
Nat Commun ; 14(1): 6411, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828018

RESUMO

Progress in neuroscience research hinges on technical advances in visualizing living brain tissue with high fidelity and facility. Current neuroanatomical imaging approaches either require tissue fixation (electron microscopy), do not have cellular resolution (magnetic resonance imaging) or only give a fragmented view (fluorescence microscopy). Here, we show how regular light microscopy together with fluorescence labeling of the interstitial fluid in the extracellular space provide comprehensive optical access in real-time to the anatomical complexity and dynamics of living brain tissue at submicron scale. Using several common fluorescence microscopy modalities (confocal, light-sheet and 2-photon microscopy) in mouse organotypic and acute brain slices and the intact mouse brain in vivo, we demonstrate the value of this straightforward 'shadow imaging' approach by revealing neurons, microglia, tumor cells and blood capillaries together with their complete anatomical tissue contexts. In addition, we provide quantifications of perivascular spaces and the volume fraction of the extracellular space of brain tissue in vivo.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Microscopia de Fluorescência/métodos , Espaço Extracelular , Cabeça
3.
Neurophotonics ; 10(4): 044402, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37215638

RESUMO

Significance: Stimulated emission depletion (STED) microscopy has been used to address a wide range of neurobiological questions in optically well-accessible samples, such as cell culture or brain slices. However, the application of STED to deeply embedded structures in the brain of living animals remains technically challenging. Aim: In previous work, we established chronic STED imaging in the hippocampus in vivo but the gain in spatial resolution was restricted to the lateral plane. In our study, we report on extending the gain in STED resolution into the optical axis to visualize dendritic spines in the hippocampus in vivo. Approach: Our approach is based on a spatial light modulator to shape the focal STED light intensity in all three dimensions and a conically shaped window that is compatible with an objective that has a long working distance and a high numerical aperture. We corrected distortions of the laser wavefront to optimize the shape of the bottle beam of the STED laser. Results: We show how the new window design improves the STED point spread function and the spatial resolution using nanobeads. We then demonstrate the beneficial effects for 3D-STED microscopy of dendritic spines, visualized with an unprecedented level of detail in the hippocampus of a living mouse. Conclusions: We present a methodology to improve the axial resolution for STED microscopy in the deeply embedded hippocampus in vivo, facilitating longitudinal studies of neuroanatomical plasticity at the nanoscale in a wide range of (patho-)physiological contexts.

4.
Cancer Res ; 83(8): 1299-1314, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36652557

RESUMO

Crossing the blood-brain barrier is a crucial, rate-limiting step of brain metastasis. Understanding of the mechanisms of cancer cell extravasation from brain microcapillaries is limited as the underlying cellular and molecular processes cannot be adequately investigated using in vitro models and endpoint in vivo experiments. Using ultrastructural and functional imaging, we demonstrate that dynamic changes of activated brain microcapillaries promote the mandatory first steps of brain colonization. Successful extravasation of arrested cancer cells occurred when adjacent capillary endothelial cells (EC) entered into a distinct remodeling process. After extravasation, capillary loops were formed, which was characteristic of aggressive metastatic growth. Upon cancer cell arrest in brain microcapillaries, matrix-metalloprotease 9 (MMP9) was expressed. Inhibition of MMP2/9 and genetic perturbation of MMP9 in cancer cells, but not the host, reduced EC projections, extravasation, and brain metastasis outgrowth. These findings establish an active role of ECs in the process of cancer cell extravasation, facilitated by cross-talk between the two cell types. This extends our understanding of how host cells can contribute to brain metastasis formation and how to prevent it. SIGNIFICANCE: Tracking single extravasating cancer cells using multimodal correlative microscopy uncovers a brain seeding mechanism involving endothelial remodeling driven by cancer cell-derived MMP9, which might enable the development of approaches to prevent brain metastasis. See related commentary by McCarty, p. 1167.


Assuntos
Neoplasias Encefálicas , Endotélio Vascular , Humanos , Endotélio Vascular/patologia , Células Endoteliais/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
6.
Sci Rep ; 11(1): 13144, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162963

RESUMO

Tumor progression and metastatic dissemination are driven by cell-intrinsic and biomechanical cues that favor the growth of life-threatening secondary tumors. We recently identified pro-metastatic vascular regions with blood flow profiles that are permissive for the arrest of circulating tumor cells. We have further established that such flow profiles also control endothelial remodeling, which favors extravasation of arrested CTCs. Yet, how shear forces control endothelial remodeling is unknown. In the present work, we aimed at dissecting the cellular and molecular mechanisms driving blood flow-dependent endothelial remodeling. Transcriptomic analysis of endothelial cells revealed that blood flow enhanced VEGFR signaling, among others. Using a combination of in vitro microfluidics and intravital imaging in zebrafish embryos, we now demonstrate that the early flow-driven endothelial response can be prevented upon specific inhibition of VEGFR tyrosine kinase and subsequent signaling. Inhibitory targeting of VEGFRs reduced endothelial remodeling and subsequent metastatic extravasation. These results confirm the importance of VEGFR-dependent endothelial remodeling as a driving force of CTC extravasation and metastatic dissemination. Furthermore, the present work suggests that therapies targeting endothelial remodeling might be a relevant clinical strategy in order to impede metastatic progression.


Assuntos
Endotélio Vascular/fisiologia , Hemorreologia , Migração Transendotelial e Transepitelial , Animais , Animais Geneticamente Modificados , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/fisiologia , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Microscopia Intravital , Microfluídica , Microscopia Confocal , Células Neoplásicas Circulantes , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Transdução de Sinais/fisiologia , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Peixe-Zebra/embriologia
7.
Neurophotonics ; 8(3): 035001, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34136589

RESUMO

Significance: Stimulated emission depletion (STED) microscopy enables nanoscale imaging of live samples, but it requires a specific spatial beam shaping that is highly sensitive to optical aberrations, limiting its depth penetration. Therefore, there is a need for methods to reduce optical aberrations and improve the spatial resolution of STED microscopy inside thick biological tissue. Aim: The aim of our work was to develop and validate a method based on adaptive optics to achieve an a priori correction of spherical aberrations as a function of imaging depth. Approach: We first measured the aberrations in a phantom sample of gold and fluorescent nanoparticles suspended in an agarose gel with a refractive index closely matching living brain tissue. We then used a spatial light modulator to apply corrective phase shifts and validate this calibration approach by imaging neurons in living brain slices. Results: After quantifying the spatial resolution in depth in phantom samples, we demonstrated that the corrections can substantially increase image quality in living brain slices. Specifically, we could measure structures as small as 80 nm at a depth of 90 µ m inside the biological tissue and obtain a 60% signal increase after correction. Conclusion: We propose a simple and robust approach to calibrate and compensate the distortions of the STED beam profile introduced by spherical aberrations with increasing imaging depth and demonstrated that this method offers significant improvements in microscopy performance for nanoscale cellular imaging in live tissue.

8.
Dev Cell ; 48(4): 554-572.e7, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30745140

RESUMO

Tumor extracellular vesicles (EVs) mediate the communication between tumor and stromal cells mostly to the benefit of tumor progression. Notably, tumor EVs travel in the bloodstream, reach distant organs, and locally modify the microenvironment. However, visualizing these events in vivo still faces major hurdles. Here, we describe an approach for tracking circulating tumor EVs in a living organism: we combine chemical and genetically encoded probes with the zebrafish embryo as an animal model. We provide a first description of tumor EVs' hemodynamic behavior and document their intravascular arrest. We show that circulating tumor EVs are rapidly taken up by endothelial cells and blood patrolling macrophages and subsequently stored in degradative compartments. Finally, we demonstrate that tumor EVs activate macrophages and promote metastatic outgrowth. Overall, our study proves the usefulness and prospects of zebrafish embryo to track tumor EVs and dissect their role in metastatic niches formation in vivo.


Assuntos
Células Endoteliais/citologia , Vesículas Extracelulares/metabolismo , Neoplasias/patologia , Microambiente Tumoral/fisiologia , Animais , Comunicação Celular/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Exossomos/metabolismo , Células Estromais/metabolismo , Peixe-Zebra
9.
Nat Commun ; 9(1): 2031, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795195

RESUMO

Invadosomes are F-actin-based structures involved in extracellular matrix degradation, cell invasion, and metastasis formation. Analyzing their proteome is crucial to decipher their molecular composition, to understand their mechanisms, and to find specific elements to target them. However, the specific analysis of invadosomes is challenging, because it is difficult to maintain their integrity during isolation. In addition, classical purification methods often suffer from contaminations, which may impair data validation. To ensure the specific identification of invadosome components, we here develop a method that combines laser microdissection and mass spectrometry, enabling the analysis of subcellular structures in their native state based on low amounts of input material. Using this combinatorial method, we show that invadosomes contain specific components of the translational machinery, in addition to known marker proteins. Moreover, functional validation reveals that protein translation activity is an inherent property of invadosomes, which is required to maintain invadosome structure and activity.


Assuntos
Podossomos/metabolismo , Biossíntese de Proteínas , Proteômica/métodos , RNA Mensageiro/metabolismo , Actinas/metabolismo , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Matriz Extracelular/metabolismo , Humanos , Microdissecção e Captura a Laser/métodos , Camundongos , Células NIH 3T3 , Neoplasias/diagnóstico , Neoplasias/patologia , Podossomos/patologia , Espectrometria de Massas em Tandem/métodos
10.
Dev Cell ; 45(1): 33-52.e12, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29634935

RESUMO

Metastatic seeding is driven by cell-intrinsic and environmental cues, yet the contribution of biomechanics is poorly known. We aim to elucidate the impact of blood flow on the arrest and the extravasation of circulating tumor cells (CTCs) in vivo. Using the zebrafish embryo, we show that arrest of CTCs occurs in vessels with favorable flow profiles where flow forces control the adhesion efficacy of CTCs to the endothelium. We biophysically identified the threshold values of flow and adhesion forces allowing successful arrest of CTCs. In addition, flow forces fine-tune tumor cell extravasation by impairing the remodeling properties of the endothelium. Importantly, we also observe endothelial remodeling at arrest sites of CTCs in mouse brain capillaries. Finally, we observed that human supratentorial brain metastases preferably develop in areas with low perfusion. These results demonstrate that hemodynamic profiles at metastatic sites regulate key steps of extravasation preceding metastatic outgrowth.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Adesão Celular , Hemodinâmica , Neoplasias Pulmonares/patologia , Melanoma/patologia , Células Neoplásicas Circulantes/patologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/metabolismo , Ciclo Celular , Circulação Cerebrovascular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Neoplásicas Circulantes/metabolismo , Estudos Retrospectivos , Células Tumorais Cultivadas , Peixe-Zebra
11.
Methods Cell Biol ; 140: 277-301, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528637

RESUMO

Combining in vivo imaging with electron microscopy (EM) uniquely allows monitoring rare and critical events in living tissue, followed by their high-resolution visualization in their native context. A major hurdle, however, is to keep track of the region of interest (ROI) when moving from intravital microscopy (IVM) to EM. Here, we present a workflow that relies on correlating IVM and microscopic X-ray computed tomography to predict the position of the ROI inside the EM-processed sample. The ROI can then be accurately and quickly targeted using ultramicrotomy and imaged using EM. We outline how this procedure is used to retrieve and image tumor cells arrested in the vasculature of the mouse brain.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica/métodos , Microtomografia por Raio-X , Animais , Linhagem Celular Tumoral , Humanos , Microscopia Intravital , Camundongos , Resinas Sintéticas/química , Raios X
12.
J Cell Sci ; 130(1): 23-38, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27505891

RESUMO

Life is driven by a set of biological events that are naturally dynamic and tightly orchestrated from the single molecule to entire organisms. Although biochemistry and molecular biology have been essential in deciphering signaling at a cellular and organismal level, biological imaging has been instrumental for unraveling life processes across multiple scales. Imaging methods have considerably improved over the past decades and now allow to grasp the inner workings of proteins, organelles, cells, organs and whole organisms. Not only do they allow us to visualize these events in their most-relevant context but also to accurately quantify underlying biomechanical features and, so, provide essential information for their understanding. In this Commentary, we review a palette of imaging (and biophysical) methods that are available to the scientific community for elucidating a wide array of biological events. We cover the most-recent developments in intravital imaging, light-sheet microscopy, super-resolution imaging, and correlative light and electron microscopy. In addition, we illustrate how these technologies have led to important insights in cell biology, from the molecular to the whole-organism resolution. Altogether, this review offers a snapshot of the current and state-of-the-art imaging methods that will contribute to the understanding of life and disease.


Assuntos
Biologia Celular , Imageamento Tridimensional , Análise Espaço-Temporal , Animais , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Biológicos
13.
J Control Release ; 236: 57-67, 2016 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-27327767

RESUMO

Lipid nanocarriers are considered as promising candidates for drug delivery and cancer targeting because of their low toxicity, biodegradability and capacity to encapsulate drugs and/or contrasting agents. However, their biomedical applications are currently limited because of a poor understanding of their integrity in vivo. To address this problem, we report on fluorescent nano-emulsion droplets of 100nm size encapsulating lipophilic near-infrared cyanine 5.5 and 7.5 dyes with a help of bulky hydrophobic counterion tetraphenylborate. Excellent brightness and efficient Förster Resonance Energy Transfer (FRET) inside lipid NCs enabled for the first time quantitative fluorescence ratiometric imaging of NCs integrity directly in the blood circulation, liver and tumor xenografts of living mice using a whole-animal imaging set-up. This unique methodology revealed that the integrity of our FRET NCs in the blood circulation of healthy mice is preserved at 93% at 6h of post-administration, while it drops to 66% in the liver (half-life is 8.2h). Moreover, these NCs show fast and efficient accumulation in tumors, where they enter in nearly intact form (77% integrity at 2h) before losing their integrity to 40% at 6h (half-life is 4.4h). Thus, we propose a simple and robust methodology based on ratiometric FRET imaging in vivo to evaluate quantitatively nanocarrier integrity in small animals. We also demonstrate that nano-emulsion droplets are remarkably stable nano-objects that remain nearly intact in the blood circulation and release their content mainly after entering tumors.


Assuntos
Lipídeos/análise , Nanocápsulas/química , Neoplasias Experimentais/diagnóstico por imagem , Animais , Carbocianinas/química , Emulsões , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Meia-Vida , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/sangue , Lipídeos/síntese química , Camundongos , Nanocápsulas/toxicidade , Neoplasias Experimentais/patologia , Imagem Óptica , Permeabilidade , Espectroscopia de Luz Próxima ao Infravermelho
14.
Intravital ; 5(1): e1168553, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28243519

RESUMO

Skeletal muscle structure and function are altered in different myopathies. However, the understanding of the molecular and cellular mechanisms mainly rely on in vitro and ex vivo investigations in mammalian models. In order to monitor in vivo the intracellular structure of the neuromuscular system in its environment under normal and pathological conditions, we set-up and validated non-invasive imaging of ear and leg muscles in mice. This original approach allows simultaneous imaging of different cellular and intracellular structures such as neuromuscular junctions and sarcomeres, reconstruction of the 3D architecture of the neuromuscular system, and video recording of dynamic events such as spontaneous muscle fiber contraction. Second harmonic generation was combined with vital dyes and fluorescent-coupled molecules. Skin pigmentation, although limiting, did not prevent intravital imaging. Using this versatile toolbox on the Mtm1 knockout mouse, a model for myotubular myopathy which is a severe congenital myopathy in human, we identified several hallmarks of the disease such as defects in fiber size and neuromuscular junction shape. Intravital imaging of the neuromuscular system paves the way for the follow-up of disease progression or/and disease amelioration upon therapeutic tests. It has also the potential to reduce the number of animals needed to reach scientific conclusions.

15.
Methods ; 94: 85-100, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26439175

RESUMO

Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.


Assuntos
Matriz Extracelular/fisiologia , Animais , Bovinos , Módulo de Elasticidade , Matriz Extracelular/química , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Microscopia de Força Atômica , Miócitos de Músculo Liso/fisiologia , Células NIH 3T3
16.
J Cell Sci ; 129(2): 444-56, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26659665

RESUMO

Intravital microscopy provides dynamic understanding of multiple cell biological processes, but its limited resolution has so far precluded structural analysis. Because it is difficult to capture rare and transient events, only a few attempts have been made to observe specific developmental and pathological processes in animal models using electron microscopy. The multimodal correlative approach that we propose here combines intravital microscopy, microscopic X-ray computed tomography and three-dimensional electron microscopy. It enables a rapid (c.a. 2 weeks) and accurate (<5 µm) correlation of functional imaging to ultrastructural analysis of single cells in a relevant context. We demonstrate the power of our approach by capturing single tumor cells in the vasculature of the cerebral cortex and in subcutaneous tumors, providing unique insights into metastatic events. Providing a significantly improved throughput, our workflow enables multiple sampling, a prerequisite for making correlative imaging a relevant tool to study cell biology in vivo. Owing to the versatility of this workflow, we envision broad applications in various fields of biological research, such as cancer or developmental biology.


Assuntos
Rastreamento de Células/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Feminino , Microscopia Intravital , Camundongos Nus , Microscopia Eletrônica de Varredura , Transplante de Neoplasias , Microambiente Tumoral , Microtomografia por Raio-X
17.
Thromb Haemost ; 114(6): 1175-88, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26245230

RESUMO

The ability of cellular fibronectin, found in the vessel wall in a fibrillar conformation, to regulate platelet functions and trigger thrombus formation remains largely unknown. In this study, we evaluated how parietal cellular fibronectin can modulate platelet responses under flow conditions. A fibrillar network was formed by mechanically stretching immobilised dimeric cellular fibronectin. Perfusion of anticoagulated whole blood over this surface resulted in efficient platelet adhesion and thrombus growth. The initial steps of platelet adhesion and activation, as evidenced by filopodia extension and an increase in intracellular calcium levels (419 ± 29 nmol/l), were dependent on integrins α5ß1 and αIIbß3. Subsequent thrombus growth was mediated by these integrins together with the GPIb-V-IX complex, GPVI and Toll-like receptor 4. The involvement of Toll-like receptor 4 could be conveyed via its binding to the EDA region of cellular fibronectin. Upon thrombus formation, the platelets became procoagulant and generated fibrin as revealed by video-microscopy. This work provides evidence that fibrillar cellular fibronectin is a strong thrombogenic surface which supports efficient platelet adhesion, activation, aggregation and procoagulant activity through the interplay of a series of receptors including integrins α5ß1 and αIIbß3, the GPIb-V-IX complex, GPVI and Toll-like receptor 4.


Assuntos
Coagulação Sanguínea/fisiologia , Fibronectinas/fisiologia , Agregação Plaquetária/fisiologia , Animais , Anexina A5/metabolismo , Matriz Extracelular , Fibrina/biossíntese , Fibroblastos , Fibronectinas/química , Proteínas Imobilizadas , Integrina beta1/genética , Integrinas/fisiologia , Dispositivos Lab-On-A-Chip , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas Analíticas Microfluídicas , Microscopia Eletrônica de Varredura , Adesividade Plaquetária , Glicoproteína IIb da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/deficiência , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/fisiologia , Reologia , Estresse Mecânico , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia
18.
PLoS One ; 9(12): e114448, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479106

RESUMO

Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis.


Assuntos
Microscopia Eletrônica/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias Experimentais/mortalidade , Neoplasias Experimentais/ultraestrutura , Animais , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...